3,111 research outputs found

    A list of all integrable 2D homogeneous polynomial potentials with a polynomial integral of order at most 4 in the momenta

    Full text link
    We searched integrable 2D homogeneous polynomial potential with a polynomial first integral by using the so-called direct method of searching for first integrals. We proved that there exist no polynomial first integrals which are genuinely cubic or quartic in the momenta if the degree of homogeneous polynomial potentials is greater than 4.Comment: 22 pages, no figures, to appear in J. Phys. A: Math. Ge

    Instability of toroidal magnetic field in jets and plerions

    Get PDF
    Jets and pulsar-fed supernova remnants (plerions) tend to develop highly organized toroidal magnetic field. Such a field structure could explain the polarization properties of some jets, and contribute to their lateral confinement. A toroidal field geometry is also central to models for the Crab Nebula - the archetypal plerion - and leads to the deduction that the Crab pulsar's wind must have a weak magnetic field. Yet this `Z-pinch' field configuration is well known to be locally unstable, even when the magnetic field is weak and/or boundary conditions slow or suppress global modes. Thus, the magnetic field structures imputed to the interiors of jets and plerions are unlikely to persist. To demonstrate this, I present a local analysis of Z-pinch instabilities for relativistic fluids in the ideal MHD limit. Kink instabilities dominate, destroying the concentric field structure and probably driving the system toward a more chaotic state in which the mean field strength is independent of radius (and in which resistive dissipation of the field may be enhanced). I estimate the timescales over which the field structure is likely to be rearranged and relate these to distances along relativistic jets and radii from the central pulsar in a plerion. I conclude that a concentric toroidal field is unlikely to exist well outside the Crab pulsar's wind termination shock. There is thus no dynamical reason to conclude that the magnetic energy flux carried by the pulsar wind is much weaker than the kinetic energy flux. Abandoning this inference would resolve a long-standing puzzle in pulsar wind theory.Comment: 28 pages, plain TeX. Accepted for publication in Ap

    Algorithmic Integrability Tests for Nonlinear Differential and Lattice Equations

    Full text link
    Three symbolic algorithms for testing the integrability of polynomial systems of partial differential and differential-difference equations are presented. The first algorithm is the well-known Painlev\'e test, which is applicable to polynomial systems of ordinary and partial differential equations. The second and third algorithms allow one to explicitly compute polynomial conserved densities and higher-order symmetries of nonlinear evolution and lattice equations. The first algorithm is implemented in the symbolic syntax of both Macsyma and Mathematica. The second and third algorithms are available in Mathematica. The codes can be used for computer-aided integrability testing of nonlinear differential and lattice equations as they occur in various branches of the sciences and engineering. Applied to systems with parameters, the codes can determine the conditions on the parameters so that the systems pass the Painlev\'e test, or admit a sequence of conserved densities or higher-order symmetries.Comment: Submitted to: Computer Physics Communications, Latex, uses the style files elsart.sty and elsart12.st

    Mappings preserving locations of movable poles: a new extension of the truncation method to ordinary differential equations

    Full text link
    The truncation method is a collective name for techniques that arise from truncating a Laurent series expansion (with leading term) of generic solutions of nonlinear partial differential equations (PDEs). Despite its utility in finding Backlund transformations and other remarkable properties of integrable PDEs, it has not been generally extended to ordinary differential equations (ODEs). Here we give a new general method that provides such an extension and show how to apply it to the classical nonlinear ODEs called the Painleve equations. Our main new idea is to consider mappings that preserve the locations of a natural subset of the movable poles admitted by the equation. In this way we are able to recover all known fundamental Backlund transformations for the equations considered. We are also able to derive Backlund transformations onto other ODEs in the Painleve classification.Comment: To appear in Nonlinearity (22 pages

    Analytic and Asymptotic Methods for Nonlinear Singularity Analysis: a Review and Extensions of Tests for the Painlev\'e Property

    Full text link
    The integrability (solvability via an associated single-valued linear problem) of a differential equation is closely related to the singularity structure of its solutions. In particular, there is strong evidence that all integrable equations have the Painlev\'e property, that is, all solutions are single-valued around all movable singularities. In this expository article, we review methods for analysing such singularity structure. In particular, we describe well known techniques of nonlinear regular-singular-type analysis, i.e. the Painlev\'e tests for ordinary and partial differential equations. Then we discuss methods of obtaining sufficiency conditions for the Painlev\'e property. Recently, extensions of \textit{irregular} singularity analysis to nonlinear equations have been achieved. Also, new asymptotic limits of differential equations preserving the Painlev\'e property have been found. We discuss these also.Comment: 40 pages in LaTeX2e. To appear in the Proceedings of the CIMPA Summer School on "Nonlinear Systems," Pondicherry, India, January 1996, (eds) B. Grammaticos and K. Tamizhman

    Rifts in Spreading Wax Layers

    Full text link
    We report experimental results on the rift formation between two freezing wax plates. The plates were pulled apart with constant velocity, while floating on the melt, in a way akin to the tectonic plates of the earth's crust. At slow spreading rates, a rift, initially perpendicular to the spreading direction, was found to be stable, while above a critical spreading rate a "spiky" rift with fracture zones almost parallel to the spreading direction developed. At yet higher spreading rates a second transition from the spiky rift to a zig-zag pattern occurred. In this regime the rift can be characterized by a single angle which was found to be dependent on the spreading rate. We show that the oblique spreading angles agree with a simple geometrical model. The coarsening of the zig-zag pattern over time and the three-dimensional structure of the solidified crust are also discussed.Comment: 4 pages, Postscript fil

    Multiple-Time Higher-Order Perturbation Analysis of the Regularized Long-Wavelength Equation

    Full text link
    By considering the long-wave limit of the regularized long wave (RLW) equation, we study its multiple-time higher-order evolution equations. As a first result, the equations of the Korteweg-de Vries hierarchy are shown to play a crucial role in providing a secularity-free perturbation theory in the specific case of a solitary-wave solution. Then, as a consequence, we show that the related perturbative series can be summed and gives exactly the solitary-wave solution of the RLW equation. Finally, some comments and considerations are made on the N-soliton solution, as well as on the limitations of applicability of the multiple scale method in obtaining uniform perturbative series.Comment: 15 pages, RevTex, no figures (to appear in Phys. Rev. E

    On the formation of black holes in non-symmetric gravity

    Get PDF
    It has been recently suggested that the Non-symmetric Gravitational Theory (NGT) is free of black holes. Here, we study the linear version of NGT. We find that even with spherical symmetry the skew part of the metric is generally non-static. In addition, if the skew field is initially regular, it will remain regular everywhere and, in particular, at the horizon. Therefore, in the fully-nonlinear theory, if the initial skew-field is sufficiently small, the formation of a black hole is to be anticipated.Comment: 9 pages, ordinary LaTex

    Extending the scope of microscopic solvability: Combination of the Kruskal-Segur method with Zauderer decomposition

    Full text link
    Successful applications of the Kruskal-Segur approach to interfacial pattern formation have remained limited due to the necessity of an integral formulation of the problem. This excludes nonlinear bulk equations, rendering convection intractable. Combining the method with Zauderer's asymptotic decomposition scheme, we are able to strongly extend its scope of applicability and solve selection problems based on free boundary formulations in terms of partial differential equations alone. To demonstrate the technique, we give the first analytic solution of the problem of velocity selection for dendritic growth in a forced potential flow.Comment: Submitted to Europhys. Letters, No figures, 5 page
    corecore